Magneto-aerotaxis in marine coccoid bacteria.

نویسندگان

  • R B Frankel
  • D A Bazylinski
  • M S Johnson
  • B L Taylor
چکیده

Magnetotactic cocci swim persistently along local magnetic field lines in a preferred direction that corresponds to downward migration along geomagnetic field lines. Recently, high cell concentrations of magnetotactic cocci have been found in the water columns of chemically stratified, marine and brackish habitats, and not always in the sediments, as would be expected for persistent, downward-migrating bacteria. Here we report that cells of a pure culture of a marine magnetotactic coccus, designated strain MC-1, formed microaerophilic bands in capillary tubes and used aerotaxis to migrate to a preferred oxygen concentration in an oxygen gradient. Cells were able to swim in either direction along the local magnetic field and used magnetotaxis in conjunction with aerotaxis, i.e., magnetically assisted aerotaxis, or magneto-aerotaxis, to more efficiently migrate to and maintain position at their preferred oxygen concentration. Cells of strain MC-1 had a novel, aerotactic sensory mechanism that appeared to function as a two-way switch, rather than the temporal sensory mechanism used by other bacteria, including Magnetospirillum megnetotacticum, in aerotaxis. The cells also exhibited a response to short-wavelength light (< or = 500 nm), which caused them to swim persistently parallel to the magnetic field during illumination.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magnetosomes and magneto-aerotaxis.

Magnetotactic bacteria orient and migrate along geomagnetic field lines. Magneto-aerotaxis increases the efficiency of respiring microaerophilic cells to efficiently find and maintain a position at a preferred microaerobic oxygen concentration. Magneto-aerotaxis could also facilitate access to regions of higher nutrient and electron acceptor concentration via periodic excursions above and below...

متن کامل

Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria.

Microorganisms living in gradient environments affect large-scale processes, including the cycling of elements such as carbon, nitrogen or sulfur, the rates and fate of primary production, and the generation of climatically active gases. Aerotaxis is a common adaptation in organisms living in the oxygen gradients of stratified environments. Magnetotactic bacteria are such gradient-inhabiting or...

متن کامل

Influence of Magnetic Fields on Magneto-Aerotaxis

The response of cells to changes in their physico-chemical micro-environment is essential to their survival. For example, bacterial magnetotaxis uses the Earth's magnetic field together with chemical sensing to help microorganisms move towards favoured habitats. The studies of such complex responses are lacking a method that permits the simultaneous mapping of the chemical environment and the r...

متن کامل

Complete genome sequence of the chemolithoautotrophic marine magnetotactic coccus strain MC-1.

The marine bacterium strain MC-1 is a member of the alpha subgroup of the proteobacteria that contains the magnetotactic cocci and was the first member of this group to be cultured axenically. The magnetotactic cocci are not closely related to any other known alphaproteobacteria and are only distantly related to other magnetotactic bacteria. The genome of MC-1 contains an extensive (102 kb) mag...

متن کامل

Tethered Magnets Are the Key to Magnetotaxis: Direct Observations of Magnetospirillum magneticum AMB-1 Show that MamK Distributes Magnetosome Organelles Equally to Daughter Cells

Magnetotactic bacteria are a unique group of bacteria that synthesize a magnetic organelle termed the magnetosome, which they use to assist with their magnetic navigation in a specific type of bacterial motility called magneto-aerotaxis. Cytoskeletal filaments consisting of the actin-like protein MamK are associated with the magnetosome chain. Previously, the function of MamK was thought to be ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biophysical journal

دوره 73 2  شماره 

صفحات  -

تاریخ انتشار 1997